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ABSTRACT 

Let S be a finite non-trivial 2-group. It is shown that there exists a non- 

trivial characteristic subgroup W(S) in S satisfying: W(S) is normal in 

H for every finite ~4-free group H with S E Syl2(H) and CH(O2(H)) <_ 
O2(H). 

Let S be a non-trivial finite 2-group. In [Gll] (see also [G12]) Glauberman raised 

the question whether it is possible to find a non-trivial characteristic subgroup 

W(S) of S such that W(S) is normal in H for every finite group H satisfying: 

(I) H is E4-free, 

(II) S e Syl2(H ) and CH(O2(H)) <_ 02(H) .  

An affirmative answer to this question would provide an analogue to 

Glauberman's Z J-Theorem for the prime 2. It also would improve Glauberman's 

Triple-Factorization Theorem proved in [G12]. 

In this note we will give an answer to that question under the following 

additional hypothesis (which was also used in [G12]): 

(III) Every non-abelian simple section of H is isomorphic to Sz(2 m) or PSL2(3 m) 

for some odd m. 

In section 3 we will define a characteristic subgroup W(S) of S with f~I(Z(S)) 

<_ W(S) <_ Z(J(S)) for which the following theorem holds. 

THEOREM: Suppose that H is a finite group satisfying (I), (II) and (III). Then 

W(S) is normal in H. 
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As with the Triple-Factorization Theorem, one can use the above Theorem 

and Goldschmidt's result about groups containing a strongly closed abelian 2- 

subgroup [Gol] to show that the hypotheses (I) and (II) already imply hypothesis 

(III) (see section 7 in [G12]). 

The proof of the Theorem uses the same approach as in [Stl] via embeddings 

and amalgamated products, but in contrast to [Stl] it does not use the amalgam 

method. 

The properties of the groups Sz(2 m) and their GF(2)-modules and of the 

groups L2(3 m) used in the proof can be found in [Su], [Ma], [G12] and [Hu], 

respectively. If the reader restricts himself to solvable groups H the proof 

becomes, apart from textbook material, self-contained. 

1. Embeddings  

Let p be a prime and S a finite p-group. An e m b e d d i n g  of S is a pair (T, H) 

where H is a group and 7- a monomorphism from S into H. We are interested in 

the following class of embeddings of S and certain subclasses of it. 

Let C be the class of all embeddings (v, H) of S such that 

(i) H is finite and S r  E Sylp(H), and 

(ii) Cn(Ov(H)) < Or(H). 

Let/4  be a non-empty subclass of C. Then H is cha rac te r i s t i ca l ly  closed, if 

(*) (aT, H) E H for every (T, H) E / / a n d  a E Aut(S). 

Os(/4) denotes the largest subgroup X of S such that 

(**) XT is normal in H for every (r, H) E H. 

1.1: Let Lt be a characteristically closed subclass o f t  and a E Aut(S). Suppose 

that the subgroup X <_ S satisfies (**). Then X a  satisfies (**). In particular, 

Os(U) is a characteristic subgroup of S. 

Proof." Let (r, H) E/d. Then (a t ,  H) E/A and thus X(av)  = ( X a ) r  is normal 

in H. | 

Let (ri, Hi) E H for i = 1,2. We define (1"1, H1) and (r2, H~) to be equiva len t ,  

if there exists an isomorphism r from H1 to H2 such that r l r  = 7-2. This defines 

an equivalence relation on H. Let [///] be the class of equivalence classes of H with 

respect to this equivalence relation. 
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1.2: Let Lt be a subclass of C. Then [/4] is a finite set. 

Proof." By (i) and (ii) in the definition of C the order of H is bounded by a 

function of IS[. Hence, if S is fixed, there exist only finitely many non-isomorphic 

groups H with (i) and (ii); and for every such group H there exist only finitely 

many monomorphisms from S into H. | 

Let {(T1, H1) , . - . ,  (Tr, H~)} be a set of representatives of the classes in [/A]. 

Then the amalgamated product of the groups H1, ..., H~ over S (for the definition 

see [Se]) is unique up to isomorphism and does not depend on the choice of the 

representatives. We denote this group by G(b/). 

As usual we identify the groups S, H1 , . . . ,  Hr with their images in G(//). 

1.3: Let lg be a non-empty subclass of C and X a subgroup of S. Then the 

following two statements are equivalent: 

(a) X satisfies (**). 

(b) X is normal in G(lZ). 

In particular, Os(lr is the largest subgroup of S which is normal in G(LI). 

Proof: This follows directly from the definition of G(/4) and the identifications 

we have made. | 

1.4: Let 11 be a characteristically closed subclass of C, A a characteristic 

subgroup of S in Os(gt) and W = (At(U)). Then W is a characteristic sub- 

group of S. 

Proof." Let a C Aut(S). By 1.3, W satisfies (**). Hence, by 1.1, W a  satisfies 

(**) and, again by 1.3, W a  is normal in G(U). Since Aa = A <_ W a  we get 

W < W a  and then W = Wa.  | 

Let CM be the class of all embeddings (T, H) E C such that: 

(M) For every normal subgroup N of H, either S T N N  <_ Op(H) or OP(H) < N.  

1.5: Let (T, H) C C. Then there exist subgroups H1 , . . . ,  Ha of H containing ST 

such that H = (H1, . . . ,  Ha) and (T, Hi) E CM for i = 1 , . . . ,  n. 

Proof: We proceed by induction on [HI, and we identify S with its image in H. 

Let N be a normal subgroup of H. Then H = NH(S n N ) N .  If both NH(S N N)  

and S N  are proper subgroups, then by induction the assertion holds for these 

subgroups and thus for H. Hence, we may assume that H = NH(S N N)  or 

H = S N  for every normal subgroup N of H. But then H satisfies (M). | 
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A group H is X-f ree ,  if A / B  ~ X for every subgroup A of H and every normal 

subgroup B of A. It is easy to see that  a finite group H satisfying (II) is E4-free, 

if and only if H/O2(H) is E3-free. 

2. M o d u l e s  

In this section let p be a prime, S a finite p-group and V a finite GF(p)S-module. 

We define 

s V) = {A < SI[V,A ] # 1, A/CA(V) elementary abelian}; 

a(S, V) = oo, if C(S, V) = O, 

a(S, V) = min{logfn/cA(v)l(IV/Cv(A)l)lA �9 E(S, V)}, otherwise. 

2.1: Let A �9 s  and U be a subspace of V. Suppose that IA/CA(V)I ~ = 

IV/Cv(A)I. Then 

either IU/Cu(A)[ < IA/CA(U)r or IV/Cv(CA(U))I < ICA(U)/CA(V)I e. 

Proof." Set Ao = CA(U). Assume that [U/Cu(A)I > IA/Aol ~. Then 

[V/Cv(Ao)[ <_ [V/Cv(A)[[Cv(A)U/Cv(A)I < 

< IA/CA(V)rlA/Aol -~--  IAo/CA(V)r. 

2.2: Let A �9 E(S, V) such that [A/Cv(A)[ ~(s,v) = [V/Cv(A)I. Then for every 

A-submodule U of V, either a(A, U) < a(S, V) or [U, A] = 1. 

Proo~ Let U be an A-submodule of V such that [U, A] # 1, and let Ao = CA(U). 

Then 2.1 implies that a(A, U) < a(S, V), or 

[V/Cv(Ao)[ < [Ao/CA(V)[ ~(s'v) = [Ao/CAo(V)p (S'v). 

The second possibility contradicts the definition of a(S, V). | 

In the following let H be a finite group, S 6 Sylp(H) and V a finite GF(p)H- 

module. Moreover, we assume that V = ( zH/  for some S-submodule Zo of V. 

Set a = a(S, Zo) and H = H/CH(V). 
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2.3 ([St2]): Suppose that there exists A E g(S, V) such that [Z0, A] = 1 and 

A <_ Or(H). Then I-A[ a <_ [V/Cv(A)[. 

Proof." We define subgroups A = Ao >_ A1 >_ ""  >_ At = CA(V) and conjugates 

Wi = Z~', xi E H, such that  Ai = CA,_I(Wi) for i = 1 , . . . , t .  Then 

IA~- I /A , [  " < IW~/Cw,(A, -~) I  

and 

On the other hand 

I 1" -< 1--[ IWdCw,(Ai-1)l. 
i=1 

IWdCw,(A~-l) l  = IW~Cv(Ai- , ) /Cv(Ai-1)[  <_ ICv(AD/Cv(Ar 

and thus 

I C y ( A t ) I C y ( A t - i ) [ " "  [Cv(A1)/Cv(Ao)[ = [V/Cv(Ao)I 
t 

IWdCw,(A - )l ITol 
i = l  

2.4: Let p = 2 and M be a maximal subgroup of H containing S. Suppose that 

(i) Every non-abelian simple section of H is isomorphic to Sz(2 m) or L2(3 m) 

for some odd m, 

(ii) H is E3-t'ree, and 

(iii) A is an elementary abelian subgroup of S, and A ~s NheH Mh" 

Then there exists a subgroup L of H such that 

(a) A < S N L c S y l 2 ( L  ) a n d L ~ s  

(b) L = (A, A x) for every x E n \ M ,  and 

(c) L/O2(L) ~- D2r,, r an odd prime, or L/O2,2,(L) ~ Sz(2m), m > 1. 

Proof: We proceed by induction on [H[. Then we may assume that  O2(H) = 1. 

Let D = NhEH Mh and [-I = H/D,  and let [U[ be minimal with S <_ U < H and 

H = UD. Then M M U is a maximal subgroup of U and 

N ( M " M U ) < _  N M ~ ' = D .  
uEU uEU 

Hence, U satisfies the hypothesis with respect to M Cl U, and by induction we 

may assume: 

(,) I f S _ < U a n d H = U D ,  t h e n U = H .  
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In particular, the Frattini argument and (*) imply that 02(/))  = 1 and D has 

odd order. 

Assume that  D r 1. Then by induction there exists L _< /~ satisfying 

(a)-(c) with respect to S, A and /t:/. Hence, L satisfies the hypothesis with 

respect to L N M, and again by induction we may assume that L = H. Now (*) 

and 02(/))  = 1 show that  L satisfies (a)-(c). 

Assume now that D -- 1. Let N be a minimal normal subgroup of H. Note 

that  H = N M .  Suppose that  N is solvable. Then N has odd order, and 

[N, A] --- ([CN(Ao), A][ [A/Aol = 2). 

If [N, A] < M, then (A H) ~ M, a contradiction. Thus, there exists a subgroup 

A0 _< A such that [A/Ao[ = 2 and [CN(Ao), A] ~ M. A subgroup L satisfying 

(a)-(c) is now easy to find in [CN(Ao), A]A. 

Suppose that  N is not solvable. Then N = E1 • -.- x Es, Ei = Sz(2 m) or 

L2(3m). In both cases NH(Ei)/EiCH(Ei) has odd order, either by (ii) or since 

Aut(Sz(2m))/Sz(2 m) has odd order. Hence NA(Ei) <_ EiCH(Ei), and as above 

IN, A] ~ M. Hence, we may assume that  [El, A]/~ M. Let A1 be a subgroup of 

A such that  

(*) A1 x NA(E1) -- A, if CA(E1) ~ NA(E1), and 

(**) CA(E1) ~_ A1 and ]A/A1] = 2, if CA(E1) = NA(E1). 

Define E = {YIaeA1 ea[ e E El}. Then E ~ El,  E is a normal subgroup of 

Cry(A1), and [E,A] ~ 1. Moreover, [E, E1N S] = E1 1s M shows that E ~ M. 

Suppose that  A ~ NH(E). Then (**) holds, and [E,a] = E x E ~ for a �9 

A \ A1. Hence, there exists an element x �9 E of odd prime order such that  

x - i x  ~ q~ M. Now L = A ( x - l x  ~) satisfies (a)-(c). 

Suppose that  A <_ NH(E). Note that EA = EZ(EA) .  If E = Sz(2m), 

the assertion is easy to check in EA. Assume that  E -~ L:(3m), m odd. By 

[Hu, II.8.27] we may assume that  (EA n M ) Z ( E A ) / Z ( E A )  ~- D3-,+1 and 

AZ(EA)  E Syl2(EA). But then NE(A) ~ MZ(EA) ,  and the assertion can 

be verified in (M N EA) y for y �9 NE(A) \ MZ(EA) .  | 

2.5: Let p = 2 and A, M, H and L be as in 2.4, and let W = (Z L) and 

L = L/CL(W).  Suppose that 

(i) NH(Zo) <_ U and [Zo, A] = 1, and 

(ii) [V, A, A] = 1. 
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Then the following hold: 

(a) W = Cw(A)Cw(A  ~) for x E L \ M .  

(b) Cw(A) = [W, A]Cw(L) = [W, alCw(L ) = Cw(a) for a �9 A\O2(L). 

(c) If  [A/A N O2(L)[ = 2, then L/O2(L) -- D2ro and every chief factor of L in 

W / C w  (L) is non-central. 

(d) If]A/ANO2(L)I >_ 4, then L/O2(L) ~ Sz(2m), m > 1, and every chieffaetor 

of L in W/Cw(L)  is a natural Sz(2"~)-modute. Moreover, if  O2(L) = 1, 

then W / Cw ( L ) is the direct product of natural Sz( 2"~ )-modules. 

Proo~ Let W = W/Cw(L)  and a �9 A\O2(L). Then there exists y �9 L such 

that a u r M and L = (A, aY). Hence W = [W, A][W, aY]Zo. By our hypotheses 

[W,A]Zo < Cw(A) and [W,A]Zo M [W,a y] < Cw(L).  Thus 

[W, A]Zo M [W, a y] = 1 and I[W, A]Zol 2 _< IWI. 

It follows that 

][W, aU]] <_ ][W,A]] _< I[W, AIZol <_ ]W/[W,A]Zo] = I[W,a~]]. 

This gives [W, A] = [W, A]Zo and W = [W, A] x [W, aY]. Now (a)-(c) follow. 

We now assume that IA/A M O2(L)] _ 4. Then L/O2,2,(L) ~ Sz(2m),m > 1. 

Suppose that [02,2,(L),A] ~ O2(L). Let Ao <_ A be maximal with a E Ao and 

Ao N O2(L) = 1. By (b), [W, Ao] = [W,a]. Now ]Ao] _ 4 shows that O2,2,(L) 

operates trivially on every chief factor of L in W, and 02(02,2,(L)) <_ CL(W). 
Since the Schur multiplier of Sz(2 m) is a 2-group this gives L/o~(L)  ~- Sz(2m). 

Let ] be an element of order 5 in L. Then f • M since NL(S A L)O2,2,(L) = 

L M M. We may assume that f is inverted by a. It follows that W = [W, a] x 

[W, aS], and f operates fixed-point-freely on W. Hence, [Ma] gives the remaining 

assertion of (d). I 

2.6: Suppose that p = 2, O2(H) = 1 and H satisfies (i) and (ii) of  2.4. Then 

2 <_ a(S, Y). 

Proof'. This is Theorem A in the appendix of [G12]. I 

Let H ~ Sz(2 m) and V be a natural Sz(2m)-module. In the next lemma we 

use the following properties of V. There exists a series 1 = V0 <_ . . .  < V4 = V of 

NH(S)-submodules of V such that 
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(i) [V~, S] = Y/_l, [Y//Y/_l[ ---- 2 m, and Y//Y/_ 1 is an irreducible NH(S)-module 

for 1 < i < 4, 

(ii) V1 = Cv(s) = [V2, s] for every s �9 S \ Z(S),  and V2 = Cv(z)  = [V, z] for 

every 1 ~ z �9 Z(S).  

2.7: Suppose that H / Z ( H )  ~- Sz(2m), m > 1, and Z(H)  < H'. Let W be a 

normal subgroup Of NH(S) in S. Then either Z(H)  < W or W < Z(H).  

Proof'. By 17.4, 25.1 and 25.3 of [Hu], Z(H)  <_ S'. Let W be a counter- 

example. Then we may assume that  [Z(H)/Z(H)  M W[ = 2. Hence, the 

action of NH(S) on S shows that S / W  is extraspecial. But [S/WZ(H)I  = 2 TM, 
m odd, a contradiction. I 

2.8: Let H/O2(H) ~- Sz(2m), m > 1, and let W be an elementary abelian normal 

subgroup of Ng(S )  in S. Suppose that 

(a) CH(O2(H)) < O2(H) and W ~ O2(H), and 

(b) 0 2 ( H ) / Z ( H )  is the direct product of natural Sz(2m)-modules. 

Then there exists a subgroup Q <_ S such that ~(Q) <_ CH(W) and [W/Cw(Q)[ 

<_ IQ/CQ(W)I # 1. 

Proo~ Let X = O2(H) and X = X / Z ( H ) ,  and set Xo = IX, S] and X 1 ---- 

[Xo, W]. Note that  X = (X N W ) ( X  M W) t for t E H \ NH(S) and [S/WX[ = 

2 m. Note further that  IX[ = q4, ]X-oo[ = q3 and ICy(S)[ = q, where q = 2 mn, n 

the number of H-chief factors in X. 

Since [Xo, S, W] -- [S, W, Xo] = 1 the 3-subgroup Lemma implies [X1, S] < 

Z(H)  and [Z"-~[ = q. In addition, Z---o = {v �9 X[[v, w] �9 X---l} for every w �9 W \ X. 

Let x �9 X \ Xo. Then [X1, x, S] = [S, X1, x] = 1 and thus also Ix, S, X1] = 1. 

Since ([~, S](W M X) ix  �9 X \ Xo) = Xo, we conclude that [X1,Xo] = 1. 

Let s �9 S \ W X .  Then s 2 = wv where v �9 (W N X ) t Z ( H )  and w �9 W. It 

follows that  (wv) 2 �9 [w,v]Z(H)= s4Z(H); in particular, [w,v] �9 Cwnx(S)  <_ 

XIZ(H) .  But this implies that  v �9 XoZ(H)  and s 2 �9 WXoZ(H) .  Then there 

exists v' �9 X such that [s, v'](W N X ) Z ( H )  = v (W N X )Z (H) .  Hence (sv') 2 = 

s2v'2[s,v '] �9 w ( W  M X)Z (H) .  Thus, there exists s �9 S \  W X  such that  s 2 �9 

WZ(H). 
Note that [s, W] < Cw(s)  M X < X1 because W is elementary abelian and 

s 2 �9 W Z ( H ) .  Hence [Xo, s, W] = Is, W, Xo] = 1 and thus also [W, Xo, s] = 

[Xl,s] = 1. Let Q = Z(H)XoW(sgig �9 NH(S)). Then [X1, Q] = 1 and [W,Q] <_ 
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X 1. It follows that  O(Q) _< CH(W). Moreover Cw(Q) = XI(Z(H)  O W) and 

CQ(W) = WZ(H).  This gives 

[W/Cw(Q)[ = 2~q <_ IQ/CQ(W)l 

since QX = S. I 

2.9: Suppose that p = 2 and H satisfies (i) and (ii) of 2.4. Then a(S, V) <_ 1 

implies a(S, Zo) <_ 1. 

Proof: Assume that a(S, V) _< 1 but a(S, Z0) > 1, and let ]V/ZoIIHI be minimal 

with that  property. Then Zo ~ V. We choose the following notation: 

E*(S, Y) is the set of all A E C(S, V) such that  ]A/CA(V)] a(S,v) = IV/Cv(A)I, 

C~(S, V) is the set of all A E s V) such that ]A/CA(V)] is minimal, 

J(S ,V)  = (AIA E C~(S,V)}, Mo = NH(J(S,V)),  Z~ = (Zo M~ and M = 

N.(Z~). 

From 2.2 we get that [Zo, J(S, V)] = 1 and thus also [Z~, J(S, V)] = 1. In 

particular V ~ Z~ and M r H. Now the minimality of ]V/ZoIIH] gives either 

Zo = Z~ or a(S, Z~) _< 1. In the second case IZ~/Zo]IMo] < IV/ZolIHl, and again 

the minimality of ]V/ZoIIHI implies that a(S, Zo) <_ 1, a contradiction. Thus, we 

have Zo = Z~. 

Let M < Ho _< H such that M is a maximal subgroup of Ho, and let Z1 

--- (zH~ Then Z, ~ Zo, and as above the minimality of IV/ZolIHI first gives 

a(S, Z1) _< 1 and then H0 = H. 

Let D = NhEH Mh" Assume that  J(S, V) < D. Then by the Frattini argument 

H = MoD _< M, a contradiction. Hence, there exists A E $~)(S, V) such that  

A ~ D. Since IA/CA(V)I is minimal the Thompson-Replacement Theorem [Go] 

gives IV, A, A] = 1. We have shown that Zo, A, M and H satisfy the hypotheses 

of 2.4 and 2.5. Moreover M = NH(Zo). 

Let L be as in 2.4. Set V = (zL), U = U/Cu(L), Ao = AN 02(L), Q = (A L) 

and L = L/CL(U). Note that  by 2.2, a(A,U) <_ a(A,V) _< 1. Note further 

that M O L = NL(Zo) and [Z0, A] = 1; in particular [N, U] = 1 for every normal 

subgroup N of L in M with [N, A] = N. Thus, if L/CL(U) is solvable, then 2.5(c) 

and the Frattini argument give MNL = CL (U)(SOL). If L/CL (U) is not solvable, 

then 2.5(b), 2.5(d) and the structure of Sz(2 m) yield M O L = CL(U)NL(S N L). 

Hence, in both cases M N L -- CL(U)NL(S N L) -- NL(Zo). 
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By 2.5(a) we also have U = Cu(A)Cu(A ~) for x < L \ M. For y �9 L we get 

that [Zo y, Ao] _< Cu(A) since [U, A, A] = 1, and [Zo y, Ao] <_ Z y <_ Cu(AY). Hence 

[Z~, Ao] _< Cu(A) nCu(A x) = Cu(L) for x �9 L \ M. 

In particular, Q operates quadratically on U and [U, Q] _< Cu (L). 
Let Bo = Ao[Q,A]. Then Cu(A) < Cu(Bo) since [Cu(A),Q] <_ Cu(L), and 

Q = B o x  B~. Moreover, 2.6 (applied to L and a non-central L-chief factor 

of U) and a(A, U) _< 1 imply that Ao ~ 1 and thus Bo % 1. 

Assume that  [A/Ao[ _> 4. Then by 2.5, L/O2(L) =~ Sz(2 m) and every chief 

factor of L in Q and U is a natural Sz(2m)-module. Hence [Bo[ = 22kin and 

]U/Cu(A)[ = 2 28m _< IAI JA/AoJJBooJ ~ 22k~§ 

m 

since a(A,U) <_ 1. It follows that  k >_ s and [Bo[ :> IU/Cu(Bo)[, and by 2.3 

applied to B0, U and L (in place of A, V and H) 

I~oF (s'Z~ _~ IU/Cv(Bo)l ~ I~ol. 

Hence a(S, Zo) _< 1, a contradiction. 

Assume now that  IA/Aol = 2. Then L/O2(L) ~ D2~, r an odd prime, since 

M N L = N-s N L). Now IQI = 22k and ]U] = 228 where r122k - 1 and r]22s - 1. 

On the other hand, as above 

[U/Cu(A)I = 28 _< 2JBol- 2 k+l 

since a(S,V) < 1, and thus s < k +  1. If s < k, we get as above with 2.3 

a(S, Zo) _< 1. Hence s = k + 1 and 22k - 22k+2 - 1 mod r. This gives r = 3, and 

L is not E4-free, a contradiction. | 

3. A characteristic subgroup 

In this section p = 2 and ~- is the class of all embeddings (T, H) of C such that 

H is Ea-free. Let $'* be the class of those (T, H) in ~- satisfying: 

(*) Every non-abelian simple section of H is isomorphic to Sz(2 m) or L2(3 "~) 

for some odd m. 

Note that  condition (ii) in the definition of C implies that  H/O2(H) is E3-free 

for every (T, H) E -~. 
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Throughout this section we identify S with its image in the corresponding 

groups H. We now define the following subclasses of 7"*: 

71: all ( r ,H)  �9 ~'* I"IC M with J(S) normal in H, 

5r2: all (T, H) �9 .T* n CM with J(S) not normal in H. 

Let  V l  • G(3 : l ) ,  Wo -~- ~'~I(Z(S)), and W = (W0al). Note that  W <_ Z(J(S))  

and that  by 1.4 W is a characteristic subgroup of S. 

For a sequence (T1, H1), . . . ,  (Tk, Hk) of elements of ~1 we define recursively: 

W i = ( W ~ I )  for i = 1 , . . . , k .  

Since Z(J(S))  is normal in G1 there exists a sequence (To, Ho) , . . . ,  (Tt, Ht) of 

elements of 7-1 such that 

(i) H0 = S, and 

(ii) W ~ r  f o r l < i < t a n d W t = W .  

3.1: a(S,W~) > 1 for 0 < i < t. 

Proof." Note that  a(S, Wo) = oo. Thus, 3.1 follows from 2.9. I 

3.2: Let (T, H) E J:2. Then either [Wi, o2(g) ]  = 1 or W~/~ O2(H). 

Proof." Suppose that  [Wi, O2(H)] r 1 and Wi < 02(H). Set Y = (wH).  As- 

sume that  Y is abelian. Then 2.9 and 3.1 give [Y, J(S)] = 1. Hence [Y, o2(g) ]  = 

1 since J(S) ~ O2(H), and thus also [Wi, O2(H)] = 1. 

Assume now that  Y is non-abelian. Then there exists x E H such that  

[Wi, W~] ~ 1. We may assume that  IWi/Cw,(W[)I <_ [W~/Cw:(Wi)[. Hence 

a(S, W~) < 1 which contradicts 3.1. I 

3.3: Suppose that (r, H) �9 3:2 and H is solvable. Then [W, o2(g) ]  -- 1. 

Proo~ Let (% H) �9 .T2 be a counterexample such that  IH[ is minimal. Then by 

1.5, NH(W) is the unique maximal subgroup of H containing S. Note that  by 

3.2, W ~ 02(H). Hence, by 2.4 there exists L < H satisfying 

(*) L/O~(L) ~ D2~, r an odd prime, and 

(**) S n L �9 Syl2(L ) and L = (W, W ~) for x E L \ NH(W). 

We choose the following notation: 

A = W N O 2 ( L ) ,  B = W ~NO~(L),  X = AB, D = A N B ,  X = X / D ,  and 

L = L / X .  
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Note that O2(L) -- X. Let j be minimal with the following property: 

(***) There exists y E G1 such that Wy ~ O2(L) and X _< S y. 

Note that y = 1 and Wj = W satisfy (***). We set V = H~, Vo = Wy, 

v = Iv0, o 2 ( v ) ] ,  yl  = IV, o2 (u ) ] ,  V = v /v l ,  x l  = ((B n 02(U))% 
Assume that j = 0. Then [X,Z~] = 1 and thus [X, O2(n)] = 1. On the 

other hand [O2(H),O2(L)] < X, since O2(H) < NH(W) N NH(W~). Hence, 

[O2(H) ,  O2(L)]  -- 1 which contradicts CH(O2(H)) K_ O2(H). 

Note that Vo = (Wy_~liz E U) since j > 0. Hence, there exists u E U such 

that Y~ WJ_I ~(O2(L). Note further that A <_ O2(U) since W is normal in G~. 

If B <_ O2(U), then X < O2(U) _< S v~, which contradicts the minimality of j. 

Since BO2(U) = XO2(U) we have shown: 

(1) B ~ O2(U) and B/B  N O2(U) ~ X / X  n O2(V). 

Since Wy_ 1 # Wy we get Y # 1. Moreover, Wy_ 1 _< A by the minimality of j,  

and Vo = VWy_I. It follows that 

(2) Vo = Y(Vo n A), V 5(O2(L) and IV/V n A I = 2. 
Since V operates quadratically on X we get from 2.5 that A = (VNA)D. Note 

further that B is abelian and D <_ Z(L). Thus, we have 

(3) [X, BNO2(U)] = [AN V, BAO2(U)] -- [X, X1] < DN V1. 

In particular [V/Cv(Xt)[ < [V/V n A[ = 2, and 2.6 gives X1 _< O2(U) and 

B N X1 = B n O2(U). Since by (3) [B, V fl X1] _< V1 we conclude that V n X1 _< 

Cv(B ). This implies that 

[B/BAO2(U)[ = ]BX1/XI[ : [AX1/Xll : l l v xx /X l ]  > ~[V/Cv(B)I. 

On the other hand, 2.6 yields IB/B n o 2 ( u ) l  ~ < IV/Cv(B)[. Thus, IV/Cw(B)I 
<_ 2, and again 2.6 shows that B < O2(U), which contradicts (1). | 

3.4: Suppose that (r, H) E F2. Then [W, O2(H)] = 1. 

Proof: Let (r, H) be a counterexample such that ]HI is minimal. By 3.2 W 

O2(H) and by 3.3 H is not solvable. As in 3.3 the minimality of H shows that 

NH(W) is the unique maximal subgroup of H containing S. It follows from 

[Su,V.25.1 and 25.3] that 02(H/O2(H)) = E1 x - - - x  Ek, Ej ~ Sz(2m), m > 1. 

In particular NH(W) = NH(S n 02(H)O2(H)). 

Since the centralizer of an involution in Sz(2 m) is a 2-group we conclude that 

any two conjugates of W generate a non-solvable group. Hence, by 2.4 there 
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exists L _< H satisfying 

(*) 

and 

L/O2(L)  ~- Sz(2m), m > 1, 

(**) S n L �9 Syl2(L ) and L = (W, W x) for x �9 L \ N H ( W ) .  

Let X be as in 3.3. The action of N L ( W )  on W shows that  L = 0 2 ( L ) X .  

Hence, L / X  is a perfect central extension of Sz(2m), and 2.7 implies that  X _< 

O2(L) _~ W X .  This gives X = O2(L), and by 2.5 X / Z ( L )  is the direct prod- 

uct of natural Sz(2m)-modules. Thus, L satisfies the hypothesis of 2.8, but 2.8 

contradicts 3.1. | 

The proof  of  the Theorem: Define W ( S )  := W. According to 3.4, W ( S )  is 

normal in H for every (T, H) �9 J:* N CM. Now 1.5 yields the Theorem. | 
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